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Abstract In this paper, a backstepping-based nonlin-
ear controller is developed to control the quadrotor in
the presence of constant and time-varying disturbances.
The control law is derived based on Lyapunov stabil-
ity arguments. The controller is integrated with a dis-
turbance observer to estimate and attenuate the effect
of the disturbing forces and moments influencing the
quadrotor. In this approach, no disturbance model is
required for the disturbance observer. Discontinuous
terms are added to the control law to ensure the nega-
tive definiteness of the Lyapunov function derivative
without neglecting the disturbance observer estima-
tion errors. Command filtering is used to compute the
derivatives of the virtual control signals to avoid the
complex analytic derivation of these derivatives, and
to avoid differentiating the discontinuous terms exist-
ing in the controller. The effectiveness of the devel-
oped controller is investigated in simulations against
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1 Introduction

Quadrotors have drawn the attention of many
researchers in different fields because of their wide
range of applications. Unfortunately, they are found
to be inherently unstable. Thus, several studies have
been carried out to stabilize their dynamics and enhance
their performance using different control approaches.
Among the control techniques used for such purpose is
the backstepping control technique.

In [5], a cascaded controller was designed such that
the quadrotor model was divided into an inner loop
representing the attitude dynamics and an outer loop
describing the position dynamics. A backstepping con-
troller was designed to stabilize the dynamics of each
loop separately. In otherwords, the inner loopdynamics
were ignoredwhile designing the controller of the outer
loop. In [20], a backstepping controller was designed
to stabilize the quadrotor dynamics by dividing the
quadrotor model into three subsystems. The first sub-
system included the altitude and yaw dynamics. The
second subsystem described the horizontal position
dynamics together with the roll and pitch dynamics.
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Finally, the third subsystem represented the propellers’
thrust force dynamics. The same authors utilized the
backstepping technique for quadrotor stabilization in
[22], where the quadrotor’s model was divided into
three subsystems similar to [20]. However, the third
subsystem in [22] represented the propellers’ angular
speed dynamics instead of the propellers’ thrust force
dynamics.

One drawback of the standard backstepping con-
trol approach is that the time derivatives of the vir-
tual control commands are needed for the control sys-
tem design. These signal derivatives can be obtained
by numerical differentiation as in [20]. However, this
approach is impractical due to the amplification of high
frequency noise in the sensor measurements. Another
method to obtain these signal derivatives is to derive
them analytically as in [5]. This analytical derivation
was possible due to the cascadednature of the controller
and neglecting the nonlinear transformation between
the Euler rates and the body rates. However, for the
full quadrotor model, the analytical derivation of these
signals might be tedious. In [23], a backstepping con-
troller was designed in such a way that the virtual con-
trol inputs and their derivatives were estimated using
sliding mode differentiators. Thus, the analytic deriva-
tion of these derivativeswas avoided.Another approach
to avoid the analytic derivation of the virtual control
inputs’ derivatives is the command-filtered backstep-
ping approach proposed by Farrell et al. [10]. This
approach has been utilized to design quadrotor tracking
controllers in several recent studies as in [9,39–41]

Unlike the standard backstepping approach, the
command-filtering backstepping technique uses, in
each step, a filtered signal of the virtual control input
instead of the actual one. The filtered signal is obtained
by propagating the actual signal through a low-pass
filter. This filter provides the derivative of the filtered
signal as well. This derivative is used together with the
filtered signal instead of the derivative of the actual sig-
nal. Thus, the differentiation of the actual signal is no
longer needed. In this approach, the compensated track-
ing error is defined, in each step, to be the difference
between the tracking error in this step and an auxiliary
variable. This auxiliary variable ismainly added to can-
cel the error between the actual virtual control signal
and its filtered version and, thus, to prove the stability
of the compensated tracking error.

Another drawback of using the backstepping tech-
nique to design quadrotor control systems is the lack

of robustness to disturbances that may be applied to
the quadrotor during flight. These disturbances may
be exogenous such as those due to wind, whereas
others may be endogenous such as the ones due
to parameter uncertainties and unmodeled dynam-
ics. Several approaches are developed to provide
backstepping-based controllerswith robustness against
disturbances.

These techniques can be divided into passive anti-
disturbance control (PADC) techniques and active anti-
disturbance control (AADC) techniques [19]. Starting
with the passive anti-disturbance techniques, these are
the techniques that attenuate disturbances through feed-
back control. These approaches include, but not limited
to, integral control [19], adaptive control [2], and slid-
ing mode control [17]. In integral control, an integral
term is added to the controller to attenuate the effect
of disturbances as is the case with PID control which
was applied to quadrotors in[4,18]. In adaptive con-
trol, the parameters of the controller are determined
based on estimated model parameters, and thus, this
control scheme deals effectively with parameter uncer-
tainties. Adaptive control was extensively used in the
domain of quadrotor control [11,27,33,34]. In sliding
mode control, a control law is designed so that a slid-
ing surface is reached in finite time. After reaching
the sliding surface, a reduced-order model is obtained
whose state trajectories slide along the sliding surface
toward the origin. To attenuate the disturbances influ-
encing the quadrotor using sliding mode control, this
control scheme requires the upper bounds of these dis-
turbances. Sliding mode control was applied to the
quadrotor as found in [5,38].

All the above-mentioned PADC were combined
with the backstepping-based control in several stud-
ies to enhance its robustness. In [31], an integral
backstepping controller with command filtering was
implemented on a quadrotor to handle constant dis-
turbances and unmodeled actuator dynamics. In [16],
an adaptive backstepping controller was designed to
control the quadrotor in the presence of uncertain
model parameters, more specifically, unknown quadro-
tor mass parameter. In [21], a sliding mode controller
was augmented with the backstepping-based controller
to attenuate the effect of disturbances. In [24], a sliding
mode observer was integrated with the backstepping-
based controller to estimate the unmeasured states as
well as the disturbances affecting the quadrotor. Other
PADC schemes can be found in the first chapter in [19].
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As mentioned in [19], although disturbances are
finally canceled through passive anti-disturbance con-
trollers, they are rejected in a relatively slow man-
ner. Thus, active anti-disturbance control methods are
utilized to get over the PADC limitations. Active
anti-disturbance control relies on disturbance esti-
mates to cancel the effect of the actual disturbances
through feedforward compensation. This control tech-
nique includes, but not limited to, disturbance observer-
based control (DOBC) and active disturbance rejection
control (ADRC). In active disturbance rejection con-
trol, an augmented state vector is created combining
the system’s states and disturbances. An extended state
observer is designed to estimate the new augmented
vector including the states and the disturbances. Active
disturbance rejection control was extensively investi-
gated in the literature as shown in [12,13,29,30]. In dis-
turbance observer-based control, disturbance estimates
are given using the so-called disturbance observer
that was, first, introduced in [26]. Since then, differ-
ent structures of disturbance observers have been uti-
lized and applied to quadrotors, such as the sliding
mode disturbance observer in [3], the nonlinear dis-
turbance observer in [36] and the frequency-domain
disturbance observer in [14]. An overviewon the differ-
ent active anti-disturbance control techniques is found
in [8].

Recently, some efforts have been carried out to pro-
vide robustness to the backstepping-based controllers
by combining them with disturbance observers as in
[35] in which the disturbances were considered to be
constant, at steady state, for the convenience of the sta-
bility analysis. Furthermore, in [7], a backstepping con-
troller was integrated with a disturbance observer for
the purpose of quadrotor control. Nevertheless, neither
the command-filtering technique nor the sliding mode
differentiators were used to overcome the problem of
differentiating the virtual control inputs of the back-
stepping controller.Moreover, a disturbancemodelwas
utilized within the controller to reject the effect of the
applied disturbances. In a recent study, a disturbance
observer-based backstepping controller has been pro-
posed in [32]. The proposed control scheme combined
the backstepping technique based on the command-
filtering approach with a disturbance observer and
was applied to a laboratory setup called the twin-rotor
MIMO system. The boundedness of the tracking error
signals was proven using singular perturbation theory.
In this approach, the disturbance observer estimation

errors were neglected in the Lyapunov stability anal-
ysis. Neglecting the disturbance observer estimation
errors was valid since the disturbance observer dynam-
ics was selected to be much faster than the applied dis-
turbances.

The main aim of this paper is to control the quadro-
tor in the presence of both constant and time-varying
disturbances, unlike [35]. The proposed controller is
based on the command-filtering backstepping tech-
nique and derived using Lyapunov stability arguments.
Robustness against disturbances is achieved via the
active anti-disturbance scheme in which a nonlinear
disturbance observer is used to estimate the disturb-
ing forces and moments without utilizing an internal
model for them. The absence of an internal model
leads to the existence of disturbance observer esti-
mation errors that may result in the indefiniteness of
the Lyapunov function derivative. Thus, discontinu-
ous terms are added to ensure the negative definiteness
of the Lyapunov function derivative without neglect-
ing the disturbance observer estimation errors, unlike
the approach in [32]. Finally, the command-filtered
backstepping approach is used to compute the deriva-
tives of the associated command signals, unlike [7].
The advantage of this modified approach is twofold:
First one is to avoid the complex analytic derivation
of these derivatives and to avoid using numerical dif-
ferentiation. The second one is to avoid the numerical
differentiation of the discontinuous terms existing in
the controller. The proposed controller is assessed by
applying it in simulations to a quadrotor model in the
presence of time-varying wind disturbances and par-
tial actuator failure. The wind model comprises con-
stant wind, discrete wind gust, and Dryden wind. How-
ever, partial actuator failure is simulated by modify-
ing the thrust force produced by one of the propellers
at a specific speed to be less than those produced
by the others at the same angular speed. Moreover,
the proposed controller is compared to the controller
developed in [32] in the presence of unmodeled rotor
dynamics which are represented by first-order linear
filters.

The paper is organized as follows: The dynamic
model of the quadrotor, including partial actuator fail-
ure as well as wind disturbances, is introduced in
Sect. 2. In Sect. 3, the disturbance observer-based
command-filtering backstepping controller is devel-
oped. Finally, the simulation results are presented in
Sect. 4, followed by the conclusion in Sect. 5.
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2 Dynamic model

The quadrotor equations of motion have been derived
and investigated in various studies [25,28]. The quadro-
tor is a MIMO underactuated nonlinear system having
four control inputs and six degrees of freedom. The
four control inputs are the total thrust U1, the rolling
moment U2, the pitching moment U3, and the yawing
moment U4. The six degrees of freedom include the
quadrotor attitude � = (φ θ ψ)� and the quadrotor
position P = (x y z)�. In this section, the quadrotor
kinematics and dynamics are introduced.

2.1 Translational kinematics and dynamics

In order to derive the translational kinematics, two ref-
erence frames are defined. The first one is the inertial
reference frame I : {OI , XI ,YI , ZI } which is fixed to
the ground, whereas the second one is the body-fixed
reference frame B : {OB, XB,YB , ZB} whose origin
is attached to the quadrotor center of mass and whose
axes rotate with the quadrotor. Denoting φ, θ and ψ as
the roll, pitch, and yaw angles representing the quadro-
tor attitude, the rotation matrix R converting the body-
fixed frame axes to the inertial frame axes is expressed
as

R =
⎡
⎣
cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ

sθ sφcθ cφcθ

⎤
⎦ . (1)

where s(·) represents the sine function and c(·) repre-
sents the cosine function.

Based on the Newton–Euler equations of motion,
the translational dynamics, represented in the inertial
frame, are described as

mP̈ = F, (2)

where m is the mass of the quadrotor, F is the total
force affecting the quadrotor and comprises three main
forces. These forces are the disturbing force Fd =
[dx dy dz]� which will be derived in detail in the com-
ing subsections, and the thrust force Ft and the gravi-
tational force Fg are given, respectively, by

Ft = U1Rē3, Fg = −mgē3, (3)

where g is the gravitational acceleration, ē3 = [0 0 1]�.
Since the collective thrustU1 is directed in the positive
direction of the ZB axis, this thrust is multiplied by the
vector ē3. Then, it is multiplied by the rotation matrix
R to be converted to the inertial reference frame. Sim-
ilarly, since the gravitational force is directed in the
negative direction of ZI axis, this force is multiplied
by the vector−ē3. The disturbing force is considered to
be already represented in the inertial frame. Therefore,
the total force vector is represented as

F = Ft + Fg + Fd

= U1Rē3 − mgē3 + Fd
(4)

By substituting (4) in (2), the quadrotor translational
dynamics is represented in detailed form as

⎡
⎣
ẍ
ÿ
z̈

⎤
⎦ =

⎡
⎢⎣

(sφsψ + cφsθcψ)U1
m + dx

m

(−sφcψ + cφsθ sψ)U1
m + dy

m
cφcθ

U1
m − g + dz

m

⎤
⎥⎦ , (5)

The disturbing forces dx , dy and dz are divided into two
parts: the wind forces dwx , dwy and dwz and the partial
actuator failure forces dux , duy and duz as follows

⎡
⎣
dx
dy
dz

⎤
⎦ =

⎡
⎣
dwx + dux
dwy + duy
dwz + duz

⎤
⎦ . (6)

2.2 Rotational kinematics and dynamics

As for the rotational kinematics, the relation between
the quadrotor angular velocities � = [p q r ]� and the
Euler rates �̇ = [φ̇ θ̇ ψ̇]� is described as

⎡
⎣

φ̇

θ̇

ψ̇

⎤
⎦ =

⎡
⎣
1 sφ tθ cφ tθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤
⎦

⎡
⎣
p
q
r

⎤
⎦ . (7)

where t(·) represents the tangent function. Based on
the Newton–Euler equations of motion, the rotational
dynamics are described as

I�̇ = −� × I� + M (8)

where the symbol (×) denotes the cross product of two
vectors, I = diag{Ix , Iy, Iz} is the inertia matrix of
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the quadrotor, and M is the total torque vector includ-
ing two main torques. These torques are the disturb-
ing torques Dm = [dup duq dur ] and the input torques
Um = [U2 U3 U4]�. Thus, the total torque vector is
written as

M = Um + Dm . (9)

By substituting (9) in (8), the quadrotor rotational
dynamics is represented in detailed form as

⎡
⎣
ṗ
q̇
ṙ

⎤
⎦ =

⎡
⎢⎣

1
Ix

[(Iy − Iz)qr +U2 + dup]
1
Iy

[(Iz − Ix )pr +U3 + duq ]
1
Iz

[(Ix − Iy)pq +U4 + dur ]

⎤
⎥⎦ , (10)

The only source of disturbing moments dk , k ∈
{p, q, r}, introduced in this work, is the moment due
to the partial actuator failure duk and thus

dp = dup, dq = duq dr = dur (11)

The disturbances due to wind and partial actuator fail-
ure are discussed in details in the following subsections.

2.3 Wind disturbance model

The wind model utilized in this paper is introduced
in this subsection and follows [1]. The inertial wind
velocities vwx , vwy , and vwz are produced due to the
following contributions:

1. Constant wind in which the velocity of the wind
remains unchanged.

2. Discrete wind gust [6,15] in which the wind veloc-
ity changes from a certain value v̄w j1 at time t1 to
another value v̄w j2 at time t2 using the following
rule

v̄w j = v̄w j1

+ (v̄w j2 − v̄w j1)

2

(
1 − cos

(
π(t − t1)

t2 − t1

))
,

(12)

3. Dryden wind model [15,37] in which the wind
velocity is produced by transmitting band-limited
white noise through the linear filters

Gx (s) = σx

√
2Lx

πV

1

1 + Lx
V s

Gy(s) = σy

√
Ly

πV

1 +
√
3Ly
V s

(1 + Ly
V s)2

Gz(s) = σz

√
Lz

πV

1 +
√
3Lz
V s

(1 + Lz
V s)2

, (13)

where V is the quadrotor speed, s is the Laplace
variable,σk and Lk , k ∈ {x, y, z}, are the turbulence
intensities and scale lengths, respectively, given by

σz = 0.1W6, Lz = z,

σx = σw

(0.177 + 0.000823z)0.4
, Lx = z

(0.177 + 0.000823z)1.2

σy = σw

(0.177 + 0.000823z)0.4
, Ly = z

(0.177 + 0.000823z)1.2

(14)

whereW6 denotes the wind speed at an altitude of 6 m.
The generated wind influences the quadrotor in the

form of a drag force dw as follows. Let v j and vw j rep-
resent the quadrotor and wind velocities, respectively,
with respect to ground. Denoting ρ as the air density,
Cdj as the quadrotor drag coefficient along the iner-
tial axis j and A j as the projected quadrotor area in
a plane perpendicular to the inertial axis j , the drag
force components dw j , j ∈ {x, y, z}, are expressed
as,

dw j = −0.5ρCdj A j (v j − vw j )
2sgn(v j − vw j ), (15)

where sgn(·) denotes the sign function and the area
Ai = [Ax Ay Az]T is computed as follows,

Ai = R̂Ab, (16)

where Ab = [Au Av Aw]T is a vector including the
projected quadrotor areas in the body-fixed planes and
R̂ is a matrix whose elements represent the absolute
values of the corresponding elements in the rotation
matrix R.

2.4 Actuator failure uncertainties

A partial actuator failure is modeled by considering
that the thrust force produced by the failed rotor, at a
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particular angular speed, reaches a value lower than the
required one. To model this effect, we assume that only
the front rotor is damaged without loss of generality.
Denoting λ as the degree of effectiveness of the front
rotor, the relation between the actual inputs Ūi acting
on the quadrotor’s rigid body and the calculated ones
Ui is given by

⎡
⎢⎢⎣
Ū1

Ū2

Ū3

Ū4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

3+λ
4 0 1−λ

2la
b−bλ
4d

0 1 0 0
la−laλ

4 0 1+λ
2

bla(−1+λ)
4d

d−dλ
4b 0 d(−1+λ)

2bla
3+λ
4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
U1

U2

U3

U4

⎤
⎥⎥⎦ .

(17)

where b and d are the thrust and drag coefficients
respectively, la is the distance between the rotor’s cen-
ter of rotation and the quadrotor center. The detailed
derivation of (17) can be found in [1]. The disturbing
force along the thrust force direction, in this case, is
given by

du1 = Ū1 −U1, (18)

and can be resolved along the inertial axes as follows

dux = (sφsψ + cφsθcψ)du1,

duy = (−sφcψ + cφsθ sψ)du1,

duz = (cφcθ )du1.

(19)

On the other hand, the disturbing moments are

dup = du2 = Ū2 −U2,

duq = du3 = Ū3 −U3,

dur = du4 = Ū4 −U4.

(20)

2.5 State space model

In this subsection, a quadrotor state space model is
introduced. The states of this model are selected to be

x1 =
[
x
y

]
, x3 =

[
φ

θ

]
, x5 =

[
z
ψ

]
,

x2 =
[
ẋ
ẏ

]
, x4 =

[
p
q

]
, x6 =

[
ż
r

]
,

(21)

Whereas the control inputs are chosen to be

u1 =
[
U2

U3

]
,u2 =

[
U1

U4

]
, (22)

Finally, the disturbances are selected to be

d1 =
[
dx
dy

]
=

[
dwx + dux
dwy + duy

]
,

d2 =
[
dp
dq

]
=

[
dup
duq

]
,

d3 =
[
dz
dr

]
=

[
dwz + duz

dur

]
,

(23)

where dwx , dwy and dwz are the disturbing forces due to
wind given by (15), dux , duy, duz, dup, duq and dur are
the disturbing forces and moments due to partial actu-
ator failure. In this case, using (5, 7, 10), the quadrotor
nonlinear state space model is written in the form

ẋ = f(x,u) + Bdd (24)

as follows
⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x2
g2(x5,U1)w(x3)
f3(x3, x6) + g3(x3)x4
f4(x4) + g4u1
f5(x3, x4) + g5(x3)x6
f6(x4) + g6(x3)u2

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

02 02 02
h2 02 02
02 02 02
02 h4 02
02 02 02
02 02 h6

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣
d1
d2
d3

⎤
⎦ (25)

where

g2 = U1
m

[
sψ cψ

−cψ sψ

]
, w =

[
sφ
cφsθ

]
, h2 =

[ 1
m 0
0 1

m

]
,

f3 =
[
cφ tθr
−sφr

]
, g3 =

[
1 sφ tθ
0 cφ

]
,

f4 =
[ Iy−Iz

Ix
qr

Iz−Ix
Iy

pr

]
, g4 =

[
1
Ix

0
0 1

Iy

]
, h4 =

[
1
Ix

0
0 1

Iy

]
,

f5 =
[
0
(sφ/cθ )q

]
, g5 =

[
1 0
0 cφ/cθ

]
,

f6 =
[ −g

Ix−Iy
Iz

pq

]
, g6 =

[
cψ cθ
m 0

0 1
Iz

]
, h6 =

[
1
m 0
0 1

Iz

]
.

(26)
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The state space model in (25) is the quadrotor model
to be used to design the backstepping controller.

3 Control system design

In this section, the controller design is divided into two
parts. First, a disturbance observer is designed to find
estimates for the disturbing forces and moments influ-
encing the quadrotor. Then, a command-filtering back-
stepping controller is designed utilizing the disturbance
estimates obtained by the disturbance observer.

3.1 Disturbance observer

The disturbance observer uses the quadrotor model
states and inputs to estimate the actual disturbances.
These estimates are then used to suppress the influence
of the disturbances while designing the backstepping
controller. The disturbance observer, designed in this
work, follows [19] and is represented as

ż = −LBdz − L(f(x,u) + BdLx),

d̂ = z + Lx.
(27)

where z is the state vector of the disturbance observer,
L is the gain matrix of the disturbance observer and d̂
is the disturbance estimate vector. The error dynamics
of the disturbance observer is given by

ėd = −LBded + ḋ, (28)

where ed is the difference between the actual distur-
bance vector and the disturbance estimate vector. By
designing the matrix L to be

L = LdBd
+, (29)

where B+
d = (B�

d Bd)
−1B�

d is the left pseudo-inverse
of Bd and Ld = diag(ld1, ..., ld6) is a positive definite
diagonal matrix, the error dynamics is modified to be

ėd = −Lded + ḋ. (30)

Since the matrix Ld is assumed to be a positive definite
matrix, then the disturbance observer error dynamics is
stable. Using the definition of the disturbance observer

estimation error, rearranging the error dynamics in (30)
results in the following equation

˙̂d = −Ld d̂ + Ldd. (31)

From (31), it can be inferred that the disturbance esti-
mate d̂i of a certain disturbance di is the output of a
unity-DC-gain first-order low-pass filter whose input
is the disturbance di . Thus, this disturbance observer
can estimate the constant wind disturbances at steady
state. As for discrete wind gust, this wind type results
due to sinusoidal wind velocity. Thus, the higher the
bandwidth of the disturbance observer given byLd with
respect to the frequency of the wind velocity, the lower
the disturbance observer estimation error. Finally, the
Dryden wind gust results due to the propagation of
band-limited white noise through the low-pass filters
given in (13). Similarly, the higher the disturbance
observer bandwidth with respect to the filter’s band-
width of the Dryden wind, the lower the disturbance
observer estimation error. The occurrence of the dis-
turbance observer estimation errors due to the different
kinds of disturbances is handled while designing the
feedback controller in the next subsection.

3.2 Backstepping controller design

In this section, the command-filtering backstepping-
based controller is developed. To design the
backstepping-based controller, the quadrotor model
is divided into two subsystems. The first subsys-
tem describes the altitude and yaw dynamics and
includes the states x5 and x6. While the second sub-
system describes the horizontal position dynamics and
includes the states x1, x2, x3 and x4.

3.2.1 Horizontal position control

The horizontal position controller is divided into four
steps as shown below.
Horizontal Position Step 1:

First, a virtual control input v1 is defined such that

ẋ1 = v1. (32)

In addition, the position tracking error z1,1 is defined
to be
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z1,1 = x̂1d − x1 (33)

where x̂1d is a filtered version of the desired horizon-
tal position trajectory x1d obtained by propagating the
actual trajectory x1d through the low-pass filter with
the transfer function

H1(s) = a10
s2 + a11s + a10

(34)

such that a11 > 0 and a10 > 0 are the filter gains. To
guarantee the stability in this step, a Lyapunov function
V1 is defined to be

V1 = 1

2
z�
1,1z1,1 (35)

Using (32, 33), the derivative of the Lyapunov function
V1 is found to be

V̇1 = z�
1,1ż1,1 = z�

1,1(
˙̂x1d − v1) (36)

By designing the virtual control input v1 to be

v1 = ˙̂x1d + K1z1,1, (37)

where K1 = k1I2×2 with k1 > 0, the above Lyapunov
function derivative is modified to be

V̇1 = −z�
1,1K1z1,1, (38)

proving the stabilization of the position tracking error
z1,1 in this step. In this case, assuming the virtual con-
trol signal v1 as the control input, the horizontal posi-
tion vector x1 converges to the filtered version of the
desired trajectory x̂1d which follows the desired trajec-
tory x1d .
Horizontal Position Step 2:

Second, a virtual control input v2 is defined such
that

ẋ2 = g2v2 + h2d1. (39)

Moreover, the velocity tracking error z2,1 is defined to
be

z2,1 = v̂1 − x2 (40)

where v̂1 is a filtered version obtained by passing the
virtual control input v1 through the command-filtering

low-pass filter with the transfer function

H2(s) = a20
s2 + a21s + a20

. (41)

such that a21 > 0 and a20 > 0 are the filter gains. From
(33, 37, 40), the derivative of the tracking error z1,1 is
given by

ż1,1 = ˙̂x1d − ẋ1
= −K1z1,1 + v1 − x2
= −K1z1,1 + v̂1 − x2 + v1 − v̂1
= −K1z1,1 + z2,1 + v1 − v̂1

(42)

To guarantee the stability in the second step, a Lya-
punov function V2 is defined as

V2 = 1

2
z�
1,2z1,2 + 1

2
z�
2,1z2,1 (43)

where z1,2 = z1,1 − w1,1 is a compensated tracking
error and w1,1 is an auxiliary control variable. Using
(39, 40, 42), the derivative of the Lyapunov function
V2 is found to be

V̇2 = z�
1,2(ż1,1 − ẇ1,1) + z�

2,1ż2,1
= z�

1,2(−K1z1,1 + z2,1 + v1 − v̂1 − ẇ1,1)

+ z�
2,1(

˙̂v1 − g2v2 − h2d1)

= z�
1,2(−K1z1,1 + v1 − v̂1 − ẇ1,1)

+ z�
2,1(

˙̂v1 + z1,2 − g2v2 − h2d1)

(44)

Design the virtual control input v2 and the auxiliary
variable w1,1 dynamics to be

v2 = g−1
2

( ˙̂v1+z1,2 + K2z2,1+L2sgn(z2,1) − h2d̂1
)

,

ẇ1,1 = −K1w1,1 + v1 − v̂1, (45)

where K2 = k2I2×2 and L2 = l2I2×2 are control gain
matrices, d̂1 is the estimate of the disturbance d1 and
sgn(z2,1) is a vector whose i th entry represents the
sign of the i th entry of the vector z2,1. Notice that the
matrix g2 is invertible in (45) if and only if U1 �= 0
which is satisfied in normal flight conditions. Denote
e1 = d1 − d̂1 as the disturbance observer estimation
error of the disturbance d1. By substituting the virtual
control input and the auxiliary variable expressions (45)
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in the Lyapunov function derivative (44), the Lyapunov
function derivative is written as

V̇2 = − z�
1,2K1z1,2 − z�

2,1K2z2,1

− z�
2,1L2sgn(z2,1) − z�

2,1h2e1,
(46)

To prove the stabilization of the velocity tracking error
z2 in this step, the negative definiteness of theLyapunov
function derivative has to be ensured. By choosing the
gain k2 > 0 and since k1 > 0, the first two terms in (46)
are found to be negative definite due to their quadratic
nature. Using the definition of h2 in (26), the last two
terms can be expressed, respectively, as

z�
2,1L2sgn(z2,1) = l2(|z2,1(1)| + |z2,1(2)|)
z�
2,1h2e1 = e1(1)

m
z2,1(1) + e1(2)

m
z2,1(2)

(47)

where

z2,1 =
[
z2,1(1)
z2,1(2)

]
e2 =

[
e1(1)
e1(2)

]
(48)

In order to ensure the negative definiteness of the sum-
mation of the two terms in (47), the gain l2 is chosen
to be always higher than the larger value of e1(1)/m
and e1(2)/m. In other words, the gain l2 is chosen to
be always higher than the infinity norm of the vector
e1/m. Let e1,max be a vectorwhose entries represent the
upper bounds of the corresponding entries in the vector
e1 and denote ||(·)||∞ as the infinity norm. Therefore,
the following conditions

k2 > 0, l2 > ||h2e1,max||∞ (49)

ensure the negative definiteness of the Lyapunov func-
tion derivative in (46). In this case, assuming the virtual
control signal v2 as the control input, the quadrotor hor-
izontal velocity x2 converges to the filtered version of
the virtual control input v̂1 which follows the virtual
control input v1.
Horizontal Position Step 3:

Third, a virtual control input v3 is defined such that

ẋ3 = f3 + g3v3. (50)

Moreover, the roll and pitch step tracking error z3,1 is
defined to be

z3,1 = v̂2 − w (51)

where v̂2 is a filtered version of the virtual control input
v2 obtained using the command-filtering low-pass filter

H3(s) = a30
s2 + a31s + a30

. (52)

such that a31 > 0 and a30 > 0 are the filter gains.
Using (40, 45, 51), the derivative of the tracking error
z2,1 is found to be

ż2,1 =˙̂v1 − ẋ2
= − K2z2,1 − z1,2 + g2v2 − L2sgn(z2,1)

+ h2d̂1 − g2w − h2d1
= − K2z2,1 − z1,2 + g2v̂2 − g2w + g2v2 − g2v̂2

− L2sgn(z2,1) − h2e1
= − K2z2,1 − z1,2 + g2z3,1 + g2(v2 − v̂2)

− L2sgn(z2,1) − h2e1 (53)

To prove the stability in this step, a Lyapunov function
V3 is defined to be

V3 = 1

2
z�
1,3z1,3 + 1

2
z�
2,2z2,2 + 1

2
z�
3,1z3,1 (54)

where z1,3 = z1,2 − w1,2 and z2,2 = z2,1 − w2,1 are
compensated tracking errors andw1,2 andw2,1 are aux-
iliary control variables. Using (42, 45, 50, 51, 53), the
derivative of the Lyapunov function V3 is found to be

V̇3 = z�
1,3(ż1,1 − ẇ1,1 − ẇ1,2)

+ z�
2,2(ż2,1 − ẇ2,1) + z�

3,1ż3,1

= z�
1,3

(−K1z1,1 + z2,1 + v1 − v̂1
+K1w1,1 − v1 + v̂1 − ẇ1,2

)

+ z�
2,2

(−K2z2,1 − z1,2 + g2z3,1 + g2(v2 − v̂2)
−L2sgn(z2,1) − h2e1 − ẇ2,1

)

+ z�
3,1(

˙̂v2 − ∂w
∂x3

ẋ3)

= z�
1,3(−K1z1,1 + K1w1,1 + z2,1 − ẇ1,2)

+ z�
2,2

(−K2z2,1 − z1,2 + g2z3,1 + g2(v2 − v̂2)
−L2sgn(z2,1) − h2e1 − ẇ2,1

)
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+ z�
3,1(

˙̂v2 − ∂w
∂x3

f3 − ∂w
∂x3

g3v3) (55)

where ∂w
∂x3

denotes the partial derivative of the vectorw
with respect to the vector x3. By designing the virtual
control input v3 and the auxiliary variables w1,2 and
w2,1 dynamics to be

v3 =
(

∂w
∂x3

g3

)−1

( ˙̂v2 + g�
2 z2,2 − ∂w

∂x3
f3 + K3z3,1),

ẇ1,2 = − K1w1,2 + w2,1

ẇ2,1 = − K2w2,1 − w1,2 + g2(v2 − v̂2)

− L2sgn(z2,1) + L2sgn(z2,2) (56)

where K3 = k3I2×2 with k3 > 0, the above Lyapunov
function derivative is modified to be

V̇3 = − z�
1,3K1z1,3 − z�

2,2K2z2,2 − z�
2,2L2sgn(z2,2)

− z�
2,2h2e1 − z�

3,1K3z3,1, (57)

guaranteeing the stability of the third step tracking error
z3 in this step. Notice that the matrix (∂w/∂x3)g3 is
invertible if−π

2 < φ < π
2 and−π

2 < θ < π
2 which are

satisfied in normal flight conditions. Therefore, assum-
ing the virtual control signal v3 as the control input, the
vector w converges to the filtered version of the virtual
control input v̂2 which follows the virtual control input
v2.
Horizontal Position Step 4:

Fourth, the angular velocities’ tracking error z4,1 is
defined to be

z4,1 = v̂3 − x4 (58)

where v̂3 is a filtered version of the signal v3 obtained
using the command-filtering low-pass filter with the
transfer function

H4(s) = a40
s2 + a41s + a40

. (59)

such that a41 > 0 and a40 > 0 are the filter gains. From
(51, 56, 58), the derivative of the tracking error z3,1 is
found to be

ż3,1 =˙̂v2 − ẇ

= ∂w
∂x3

g3v3 + ∂w
∂x3

f3 − g�
2 z2,2

− K3z3,1 − ∂w
∂x3

f3 − ∂w
∂x3

g3x4

= ∂w
∂x3

g3v3 − g�
2 z2,2 − K3z3,1 − ∂w

∂x3
g3x4

= − K3z3,1 − g�
2 z2,2 + ∂w

∂x3
g3(v̂3 − x4)

− ∂w
∂x3

g3(v3 − v̂3)

= − K3z31 − g�
2 z22 +

(
∂w
∂x3

g3

)
ẑ4,1

+
(

∂w
∂x3

g3

)
(v3 − v̂3)

(60)

To prove the stability in the fourth step, the Lyapunov
function V4 is defined to be

V4 = 1

2
z�
1,4z1,4 + 1

2
z�
2,3z2,3 + 1

2
z�
3,2z3,2 + 1

2
z�
4,1z4,1

(61)

where z1,4 = z1,3 − w1,3, z2,3 = z2,2 − w2,2 and
z3,2 = z3,1 − w3,1 are compensated tracking errors
andw1,3,w2,2 andw3,1 are auxiliary control variables.
Using (25, 42, 45, 53, 56, 58, 60), the derivative of the
Lyapunov function V4 is found to be

V̇4 = z�
1,4ż1,4 + z�

2,3ż2,3 + z�
3,2ż3,2 + z�

4,1ż4,1

= z�
1,4

(−K1z1,1 + z2,1 + v1 − v̂1 + K1w1,1

−v1 + v̂1 + K1w1,2 − w2,1 − ẇ1,3

)

+ z�
2,3

⎛
⎜⎜⎝

−K2z2,1 − L2sgn(z2,1) − h2e1 − z1,2
+g2z3,1 + g2(v2 − v̂2) + K2w2,1

+w1,2 − g2(v2 − v̂2) − L2sgn(z2,2)
+L2sgn(z2,1) − ẇ2,2

⎞
⎟⎟⎠

+ z�
3,2

(
−K3z3,1 − g�

2 z2,2 + ∂w
∂x3

g3z4,1
+ ∂w

∂x3
g3(v3 − v̂3) − ẇ3,1

)

+ z�
4,1(

˙̂v3 − f4 − g4u1 − h4d2)

= z�
1,4

(−K1z1,1 + K1w1,1 + K1w1,2

+z2,1 − w2,1 − ẇ1,3

)

+ z�
2,3

(−K2z2,1 + K2w2,1 − L2sgn(z2,2)
−h2e1 + g2z3,1 − z1,2 + w1,2 − ẇ2,2

)

+ z�
3,2

(
−K3z3,1 − g�

2 z2,2 + ∂w
∂x3

g3z4,1
+ ∂w

∂x3
g3(v3 − v̂3) − ẇ3,1

)

+ z�
4,1(

˙̂v3 − f4 − g4u1 − h4d2) (62)

123



www.manaraa.com

Active anti-disturbance control of a quadrotor unmanned aerial vehicle 591

Design the control input u1 and the auxiliary variables
w1,3, w2,2 and w3,1 dynamics as follows

u1 = g−1
4

( ˙̂v3 + ( ∂w
∂x3

g3)�z3,2 − f4 − h4d̂2
+K4z4,1 + L4sgn(z4,1)

)
,

ẇ1,3 = −K1w1,3 + w2,2

ẇ2,2 = −K2w2,2 + g2w3,1 − w1,3

− L2sgn(z2,2) + L2sgn(z2,3)

ẇ3,1 = −K3w3,1 + ∂w
∂x3

g3(v3 − v̂3) − g�
2 w2,2 (63)

where K4 = k4I2×2 and L4 = l4I2×2 are control gain
matrices, d̂2 is the estimate of the disturbance d2, and
sgn(z4,1) is a vector whose i th entry represents the sign
of the i th entry of the vector z4,1. Notice that the matrix
g4 is always invertible since it is a diagonal matrix with
Ix and Iy along its diagonal. Denote e2 = d2 − d̂2 as
the disturbance observer estimation error of the dis-
turbance d2. By substituting the virtual control input
and the auxiliary variable expressions (63) in the Lya-
punov function derivative (62), the Lyapunov function
derivative is modified to be

V̇4 = − z�
1,4K1z1,4 − z�

2,3K2z2,3

− z�
2,3L2sgn(z2,3) − z�

2,3h2e1

− z�
3,2K3z3,2 − z�

4,1K4z4,1

− z�
4,1L4sgn(z4,1) − z�

4,1h4e2,

(64)

Recall the definition of the vector h4 in (26). To prove
the stabilization of the angular velocity tracking error
z4,1 in this step, the same procedures at the end of step
2 are followed leading to the conditions

k4 > 0, l4 > ||h4e2,max||∞, (65)

where e2,max is a vector whose entries represent the
upper bounds of the corresponding entries in the vector
e2. In this case, the quadrotor horizontal velocity x4
converges to the filtered version of the virtual control
input v̂3 which follows the virtual control input v3.

3.2.2 Altitude and heading controller

Regarding the altitude and heading controller, it is
divided into two steps as shown below.

Altitude and Heading Step 1:
First, a virtual control input v5 is defined such that

ẋ5 = f5 + g5v5. (66)

Moreover, the tracking error z5,1 is defined to be

z5,1 = x̂5d − x5 (67)

where x̂5d is a filtered version of the desired altitude
and heading trajectories x5d obtained by propagating
the actual trajectories x5d through the low-pass filter

H5(s) = a50
s2 + a51s + a50

(68)

where the gains a51 > 0 and a50 > 0 are the filter gains.
To guarantee the stability in this step, the Lyapunov
function V5 is chosen as

V5 = 1

2
z�
5,1z5,1 (69)

Using (66, 67), the derivative of the Lyapunov function
V5 is found to be

V̇5 = z�
5,1ż5,1 = z�

5,1(
˙̂x5d − f5 − g5v5) (70)

By designing the virtual control input v5 to be

v5 = g−1
5 ( ˙̂x5d − f5 + K5z5,1), (71)

where K5 = k5I2×2 with k5 > 0, the above Lyapunov
function derivative is modified to be

V̇5 = −z�
5,1K5z5,1, (72)

which proves the stabilization of the tracking error z5,1
in this step. The matrix g5 is invertible if −π

2 < φ <
π
2 which is satisfied in normal operating conditions.
Notice that this condition is also reached in the hor-
izontal position controller. In this case, assuming the
virtual control signal v5 as the control input, the alti-
tude and heading vector x5 converges to the filtered
version of the desired trajectory x̂5d which follows the
desired trajectory x5d .
Altitude and Heading Step 2:

Second, the tracking error z6,1 is defined to be

z6,1 = v̂5 − x6 (73)
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where v̂5 is a filtered version obtained by passing the
virtual control input v5 through the command-filtering
low-pass filter

H6(s) = a60
s2 + a61s + a60

(74)

such that a61 > 0 and a60 > 0 are the filter gains. From
(67, 71, 73), the derivative of the tracking error z5,1 is
found to be

ż5,1 = ˙̂x5d − ẋ5
= −K5Z5,1 + f5 + g5v5 − f5 − g5x6
= −K5z5,1 + g5v̂5 − g5x6 + g5v5 − g5v̂5
= −K5z5,1 + g5z6,1 + g5(v5 − v̂5)

(75)

To prove the stability in the sixth step, the Lyapunov
function V6 is defined to be

V6 = 1

2
z�
5,2z5,2 + 1

2
z�
6,1z6,1 (76)

where z5,2 = z5,1 − w5,1 is a compensated tracking
error and w5,1 is an auxiliary control variable. Using
(25, 73, 75), the derivative of the Lyapunov function
V6 is found to be

V̇6 = z�
5,2ż5,2 + z�

6,1ż6,1

= z�
5,2(ż5,1 − ẇ5,1) + z�

6,1(
˙̂v5 − ẋ6)

= z�
5,2(−K5z5,1 + g5z6,1 + g5(v5 − v̂5) − ẇ5,1)

+ z�
6,1(

˙̂v5 − f6 − g6u2 − h6d3) (77)

Design the control input u2 and the auxiliary variable
w5,1 dynamics to be

u2 = g−1
6

( ˙̂v5 + g�
5 z5,2 − f6 − h6d̂3

+K6z6,1 + L6sgn(z6,1)

)

ẇ5,1 = −K5w5,1 + g5(v5 − v̂5),

(78)

where K6 = k6I2×2 and L6 = l6I2×2 are control gain
matrices, d̂3 is the estimate of the disturbance d3 and
sgn(z6,1) is a vector whose i th entry represents the sign
of the i th entry of the vector z6,1. Notice that the matrix
g6 in (78) is invertible if and only if −π

2 < φ < π
2 and

−π
2 < θ < π

2 which are satisfied in normal flight

conditions. Denote e3 = d3 − d̂3 as the disturbance

observer estimation error of the disturbanced3. By sub-
stituting the virtual control input and the auxiliary vari-
able expressions (78) in the Lyapunov function deriva-
tive (77), the Lyapunov function derivative is modified
to be

V̇6 = − z�
5,2K5z5,2 − z�

6,1K6z6,1

− z�
6,1h6e3 − z�

6,1L6sign(z6,1),
(79)

Recall the definition of the vector h6 in (26).To prove
the stabilization of the tracking error z6,1 in this step,
the same procedures at the end of step 2 and step 4 of
the horizontal position control are followed leading to
the conditions

k6 > 0, l6 > ||h6e3,max||∞, (80)

where e3,max is a vector whose entries represent the
upper bounds of the corresponding entries in the vector
e3. In this case, the state vector x6 converges to the
filtered version of the virtual control input v̂5 which
follows the virtual control input v5.

3.3 Main result

Finally, the main result of this work is summarized in
this section. This result mainly depends on the fourth
step of the horizontal position control design as well
as the second step of the altitude and heading control
design and can be summarized as follows.

Theorem Consider the quadrotor model given in (24,
25, 26). Define the compensated tracking error vector
zc = [z�

1,4, z�
2,3, z�

3,2, z�
5,2]� and the tracking error

vector z = [z�
4,1, z�

6,1]� as in (61, 76). Then, the hor-
izontal position control law (37, 45, 56, 63) and the
altitude and heading control law (71, 78) together with
the low-pass filters (34, 41, 52, 59, 68, 74) stabilize the
compensated tracking errors zc and the tracking errors
z, when the gains ki > 0, i ∈ {1, . . . , 6} and the gains
l j , j ∈ {2, 4, 6} satisfy the relations in (49, 65, 80),
where er,max, r ∈ {1, 2, 3} are the maximum values of
the estimation errors of the disturbance observer given
in (27).
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Table 1 Quadrotor’s model parameters, desired outputs, and
initial outputs

Quadrotor mass 2.25 Kg

Gravitational acceleration 9.81 m/s2

Moment of inertia around the inertial x-axis 41.3 gm2

Moment of inertia around the inertial y-axis 42.2 gm2

Moment of inertia around the inertial z-axis 75.9 gm2

Desired position along the x-axis 0.8 m

Desired position along the y-axis 0.8 m

Desired position along the z-axis 10.5 m

Desired heading 30◦

Initial position along the z-axis 10 m

4 Simulation results

In this section, the disturbance observer-based
command-filtering backstepping controller is imple-
mented and applied to the quadrotor model in
simulation. The quadrotor’s parameters used in the
simulations are listed in Table 1. Table 1 shows also
the quadrotor’s desired position and heading and the
nonzero initial states.

Two test scenarios are implemented in this work.
The main aim of the first test scenario is to test the
robustness of the controller developed in this work,
whereas themain target of the second one is to compare
the performance of this developed controller to that of
the controller developed in [32]. Although the singular
perturbation theory, proving the boundedness of all the
tracking errors in [32], is not used in this work due to
the discontinuity of the developed controller, the track-
ing errors are found to be bounded in the following
test scenarios by appropriately tuning the gains of the
proposed controller.

In the first test scenario, the considered disturbances
occur due to two main contributions. The first contri-
bution is the drag force due to wind which is generated
by combining constant wind, discrete wind gust model,
and Dryden wind turbulence model. The constant wind
velocities are chosen to be vx,constant = −4m/s,
vy,constant = −4m/s and vz,constant = −2m/s. Two
wind gusts occur whose parameters are given in Tables
2 and 3. The parameterW6 of the Dryden wind is given
by W6 = 20m/s. The second contribution is the dis-
turbing forces and moments due to partial actuator fail-

Table 2 First discrete wind gust parameters

Initial time 10 s

Final time 15 s

Initial x-axis velocity 0m/s

Final x-axis velocity −4m/s

Initial y-axis velocity 0m/s

Final y-axis velocity −4m/s

Initial z-axis velocity 0m/s

Final z-axis velocity −2m/s

Table 3 Second discrete wind gust parameters

Initial time 20 s

Final time 25 s

Initial x-axis velocity −4m/s

Final x-axis velocity −8m/s

Initial y-axis velocity −4m/s

Final y-axis velocity −8m/s

Initial z-axis velocity −2m/s

Final z-axis velocity −4m/s

ure in which the front rotor is simulated to lose 40% of
its effectiveness after 30 s.

The disturbing forces and moments affecting the
quadrotor duringflight along the inertial axes are shown
in Fig. 1. The magnitude of the disturbing forces
increase over time from t = 0 until t = 30 due to
the corresponding increase in the wind velocity. All
the disturbing moments from t = 0 s to t = 30 s are
zero because the disturbing moments occur only due to
actuator failure that takes place at t = 30 s. Moreover,
the disturbing moment around the inertial axis XI is
always equal to zero because the control input U2 is
not affected by the failure of the front rotor. The distur-
bance’s sudden changes at t = 30 s occur because the
partial actuator failure happens at this instant.

The disturbance observer estimation errors of the
disturbing forces and moments are shown in Fig. 2.
The maximum errors of the disturbing force estimates
do not exceed 1N along the inertial XI and YI axes
and reaches 2.5N along the inertial ZI axis. The maxi-
mum error along the ZI axis is higher due to the partial
actuator failure occurring at t = 30 s. The maximum
errors of the disturbing moment estimates occur once
the actuator failure happens because the estimates of
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Fig. 1 Test scenario 1: disturbing forces and moments
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Fig. 2 Test scenario 1: disturbance observer estimation error

Table 4 Controller gains

Gain Value Gain Value

Ld 4I6×6 l2 1

l4 20 l6 2

k1 1 k2 6

k3 15 k4 20

k5 1 k6 2

a10 1 a11 2

a20 25 a21 10

a30 64 a31 16

a40 400 a41 40

a50 1 a51 2

a60 25 a61 10

the disturbing moments are equal to zero at this instant.
Based on themaximum values of these errors, the gains
l2, l4, and l6 of the discontinuous terms in the control
law are chosen as shown in Table 4.

The quadrotor position and attitude response are
shown in Figs. 3 and 4. The control signals provided
by the controller are shown in Fig. 5. The gains of the
backstepping controller are shown inTable 4.As shown
in Figs. 3 and 4, the position and heading errors almost
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Fig. 3 Test scenario 1: quadrotor’s position errors
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Fig. 4 Test scenario 1: quadrotor’s roll and pitch trajectories and
heading error

converge to zero even in the presence of the applied
disturbances. The tracking errors start from high ini-
tial values due to the difference between the desired
output values and the quadrotor initial conditions. In
addition, it can be observed from Fig. 4 that the mean
values of the roll and pitch angles are not zero since
thrust forces along the XI and YI axes are needed to
counteract the disturbing forces. Furthermore, the sud-
den changes existing in the control inputs U1, U3 and
U4 at t = 30 s occur due to the partial actuator failure.
The reason why the control inputs in Fig. 5 are contin-
uous is that all of the occurrences of the sgn function
in the control laws are replaced by the sat function. To
justify this replacement, the quadrotor’s output track-
ing errors and control signals using the sgn function
are shown in Figs. 6 and 7 respectively. By comparing
the results of the two simulation runs, it is obvious that
the quadrotor’s output response in both cases is similar
with a chatter-free control signal in the case of the sat
function as shown by comparing Figs. 5 and 7. It is
worth mentioning that in the case of the sgn function,
some oscillations occur in the output tracking errors.
The control input chattering and the output tracking
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Fig. 5 Test scenario 1: quadrotor’s control inputs
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Fig. 6 Test scenario 1: quadrotor’s output errors (using sgn func-
tion)
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Fig. 7 Test scenario 1: quadrotor’s control inputs (using sgn
function)

error oscillation make the application of the proposed
controller with the sgn function impractical.

In the second test scenario, the disturbances due to
wind and partial actuator failure are disabled. Instead,
rotor dynamics are activated and considered as unmod-
eled dynamics. The dynamics of each rotor are rep-
resented by a first-order low-pass filter with a time
constant τ = 20 and a unity DC gain. The quadro-
tor’s parameters, the quadrotor’s initial conditions and
the proposed controller gains are selected to be the
same as in Tables 1 and 4. The quadrotor’s desired
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Fig. 8 Test scenario 2: quadrotor position errors
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Fig. 9 Test scenario 2: quadrotor roll and pitch trajectories and
yaw error

set-points are selected to be x1d = [1m, 1m]� and
x5d = [11m, 30◦]�. The gains of the controller in [32]
are selected to be the same as those of the controller
developed in this paper except for the disturbance
observer gains which are chosen to be Ld = 20I6×6

instead of Ld = 4I6×6. Since the main difference
between the two controllers is the existence of the satu-
ration function in the controller developed in this work,
this controller is denoted as the backstepping controller
with saturation functions (BS with sat), whereas the
other controller is called the backstepping controller
without saturation functions (BS without sat).

The quadrotor’s output error as well as the roll and
pitch angles in the case of both controllers is shown in
Figs. 8 and 9. In addition, the control signals provided
by both controllers are shown in Fig. 10. As shown in
Fig. 8 and the last figure in Fig. 9, the tracking errors
in the case of the controller in [32] converge faster than
those of the controller developed in this work. This is
due to the low-pass filters H1(s) and H5(s) through
which the reference signals propagate. Consequently,
the overshoots of the roll and pitch angles in the case of
the controller in [32] are higher than those of the newly
developed controller in this paper as shown in Fig. 9.
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Fig. 10 Test scenario 2: quadrotor control inputs

Finally, as shown in Fig. 10, the control inputs of the
controller in [32] are found to be more aggressive than
those of the controller developed in this paper.

It is worth mentioning that, when the disturbance
observer gains of the controller in [32] are chosen
as Ld = 4I6×6, the controller does not work prop-
erly and the tracking errors diverge. This is because
the rotor dynamics are considered as fast time-varying
disturbances which require fast disturbance observer
dynamics to reduce the ignored effect of the distur-
bance observer estimation errors. On the other side, the
controller developed in this work works properly even
when choosing low disturbance observer gains because
the disturbance observer estimation errors are handled
using the saturation function which is not used in the
controller in [32].

5 Conclusion

In this paper, a model-based nonlinear controller is
developed to control the quadrotor in the presence of
both constant and time-varying disturbances. The con-
troller is designed using the backstepping approach
and the Lyapunov stability theory. The backstepping
controller is augmented with a disturbance observer
to attenuate the effect of disturbances affecting the
quadrotor during flight. To ensure the negative defi-
niteness of the Lyapunov function derivatives, discon-
tinuous terms are added to the control law. The deriva-
tives of the virtual control inputs of the backstepping
controller are computed using the command-filtering
approach to overcome the complex derivation of these
derivatives and to avoid differentiating the discontinu-
ous terms. The developed controller does not utilize any
disturbance model. The proposed controller is imple-
mented and applied to a quadrotor model in simula-

tion. Disturbances are generated using a wind model,
partial actuator failure, and unmodeled rotor dynam-
ics. The simulation results show the effectiveness of
the designed controller.
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